a2 United States Patent
Zhou et al.

US009384015B2

(10) Patent No.: US 9,384,015 B2
(45) Date of Patent: Jul. 5, 2016

(54) TECHNIQUES FOR DYNAMICALLY
REDIRECTING DEVICE DRIVER
OPERATIONS TO USER SPACE

(71) Applicants: Xiaocheng Zhou, Beijing (CN); Hu
Chen, Beijing (CN); Shoumeng Yan,
Beijing (CN); Ying Gao, Beijing (CN)

(72) Inventors: Xiaocheng Zhou, Beijing (CN); Hu
Chen, Beijing (CN); Shoumeng Yan,
Beijing (CN); Ying Gao, Beijing (CN)

(73) Assignee: INTEL CORPORATION, Santa Clara,
CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 83 days.

(21) Appl. No.: 14/129,934

(22) PCT Filed: Jul. 16, 2013

(86) PCT No.: PCT/CN2013/079471
§ 371 (o)),
(2) Date: Dec. 28,2013

(87) PCT Pub. No.: WO02015/006923
PCT Pub. Date: Jan. 22, 2015

(65) Prior Publication Data
US 2015/0212832 Al Jul. 30, 2015

(51) Int.CL

(58) Field of Classification Search
CPC . GOG6F 9/44505; GOGF 9/4411; GOG6F 12/023;
GOG6F 2212/251
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
7,099,866 B1* 8/2006 Crosbie GOG6F 21/552

7,392,527 B2 6/2008 Callender
7,941,813 Bl 5/2011 Protassov et al.

2003/0014521 Al* 1/2003 Elsonetal. 709/225
2006/0253859 Al 11/2006 Dai et al.

2009/0296685 Al* 12/2009 O’Sheaetal. 370/351
2012/0131375 Al* 5/2012 Addaetal. ..o 714/2

FOREIGN PATENT DOCUMENTS

CN 101236499 8/2008
CN 103051716 4/2013
OTHER PUBLICATIONS

International Search Report and Written Opinion received for PCT
Patent Application No. PCT/CN2013/079471, mailed Apr. 23, 2014,
13 pages.

* cited by examiner
Primary Examiner — Charles E Anya
57 ABSTRACT

Various embodiments are generally directed an apparatus and
method for configuring an execution environment in a user
space for device driver operations and redirecting a device
driver operation for execution in the execution environment in

GOG6F 9/445 (2006.01) the user space including copying instructions of the device

GOG6F 9/144 (2006.01) driver operation from the kernel space to a user process in the

GO6F 12/02 (2006.01) user space. In addition, the redirected device driver operation
(52) US.CL may be executed in the execution environment in the user

CPC GO6F 9/44505 (2013.01); GOGF 9/4411 space.

(2013.01); GOGF 12/023 (2013.01); GOGF
2212/251 (2013.01) 25 Claims, 12 Drawing Sheets
300

~

rDerermine the start address and the length of the
device driver operation to be redirected and copy
the binary files of the device driver operation to @
wser process in user space

n J

l

(Genemte a operation o call a conirol operation
with the process identification (ID) of the user
process and the redirected device driver operation
user space address as parameters

\ u J

|

(" Store the beginning instructions of the original)

binary file in the kernel space of the device driver

operation in memory and change the instructions
10 a jump instruction

ia J

l)

rDerErmimz if the any of the copied instructions of
the binary file requires an inierrupt, siore the
instruction in memory, and change first byte to
an interrupt command

\. 2 J

.

~

(.

{

| Recover the stored instructions from memory for |
| the binary file in the kernel space

| 325

US 9,384,015 B2

Sheet 1 of 12

Jul. §5,2016

U.S. Patent

[O

(NdD) 1un ? \S

(s)aotaa(q ddowapy Suiss2204J 2ADMPUDE] —

dzgnduion)

407

JUW2SVUDP JUW2SVUDP JUIUWDFDUDP oovds iy v

(s)ao12(7 diowapy $§2004J

aor

§21404q1T suononddy aovdg 428/ —

0

[

U.S. Patent Jul. 5, 2016 Sheet 2 of 12 US 9,384,015 B2
4)
4 N
User Space Control
Module —>
202
\ _J/
Register
4) Control Module
Channel Control 222
Module >
204
_ J
Memory
4) Control Module
Kernel Space Control 224
Module Pl
206
\ J
Privilege
) Control Module
Interrupt Handler 226
Module >
208 Environment
J Configuration
and Control
Module
220
Device Driver N J
Redirection Module
210
Device Driver Redirection System
- : Y,

FIG. 2

U.S. Patent

Jul. 5, 2016 Sheet 3 of 12

300

Determine the start address and the length of the
device driver operation to be redirected and copy
the binary files of the device driver operation to a
user process in user space

305

l

Generate a operation to call a control operation
with the process identification (1D) of the user
process and the redirected device driver operation
user space address as parameters

310

l

Store the beginning instructions of the original
binary file in the kernel space of the device driver
operation in memory and change the instructions
o a jump instruction

315

l

Determine if the any of the copied instructions 0}]

s ag)

M)

M)

the binary file requires an interrupt, store the
instruction in memory, and change a first byte to
an interrupt command

320

o Q)

the binary file in the kernel space

(
ecover tne Stored Instructions from memory for
R h di jons fi Jor |
: 325 |

US 9,384,015 B2

U.S. Patent

FIG. 4

Jul. 5, 2016 Sheet 4 of 12

call from generated
operation

Configure the
— execution
404 environment

Yes
‘Determine if operation
is in atomic context

406~

Initiate the
redirected device
410 driver operation in
user space

Y

Sleep until a
message is received
—P1 from the user
process in user

space

412

414

Is message an Yes

US 9,384,015 B2

Execute the
operation in the
kernel space

408

end message?

Determine action
device driver
operation requires

418

Complete action and
return result fo the

user process and/or
interrupt handler

[~ 420

Return values are
received from the
user process and are
set in the registers
Jor the returned
values

416

US 9,384,015 B2

Sheet 5 of 12

Jul. §5,2016

U.S. Patent

0rs

uondaoxa 4ay1()

Vs ‘OId

0es

uoyv.Lado jauLay
Sjp2 uoyvLado
AI0LIP 2149(]

0zs

ro¢

ovds jaulay ul
uonnoIaxa sadinbai
uonon.4sui
23a71014 T

1dn.Liau]
J0 asnpo

QUIULIDII(]

01§

Aiowiau 20vds
[2U42y 0] §S200D
sanbad uoyv.1ado
ADALID 2210d(]

U.S. Patent

Jul. 5, 2016 Sheet 6 of 12

4)

Send address of kernel memory to
access to the kernel space
312

N\ J

4)

Receive reply and memory contents
from kernel space
514

N\ J

end

FIG. 5B

US 9,384,015 B2

U.S. Patent

Jul. 5, 2016 Sheet 7 of 12

()

Send the privilege instruction to kernel
space for execution
522

N J

l

()

Receive a reply for the privilege
instruction including any return
value(s)

524

N J

(~ Set the target register of the "\
privileged instruction with the return
value(s) and set the instruction pointer

to skip the privileged instruction
526

N J

End

FIG. 5C

US 9,384,015 B2

U.S. Patent

Jul. 5, 2016 Sheet 8 of 12

4 D

Determine address of kernel operation
32

- J

4)

Send address and contents of related
register to the kernel space
334

- J

e A

Set registers to store the return value
and set instruction pointer to skip over
call instruction
336

- J

End

FIG. 5D

US 9,384,015 B2

U.S. Patent

Jul. 5, 2016 Sheet 9 of 12
4)
Call default exception handler

542

_ _/

Y
4)
Receive result from default exception
handler

244

G J
End

FIG. 5E

US 9,384,015 B2

US 9,384,015 B2

Sheet 10 of 12

Jul. §5,2016

U.S. Patent

9 OIA

(NdD) 1N

(S)aotaa(g ddouapy Suissanod g 2UDMPIDE]
Jdanduio?)

2IMPOP 10810 2ovdS jou4dY

20vdg jaulay

1P
] OnHL6) S4B

JINPORY jO4UO))

\-

20pdS 125/)

U.S. Patent Jul. 5, 2016 Sheet 11 of 12 US 9,384,015 B2

700

CONFIGURE AN EXECUTION ENVIRONMENT IN A USER
SPACE FOR DEVICE DRIVER OPERATIONS
705

(" REDIRECT A DEVICE DRIVER OPERATION TO THE)

EXECUTION ENVIRONMENT IN THE USER SPACE FOR
EXECUTION INCLUDING COPYING INSTRUCTIONS OF THE
DEVICE DRIVER OPERATION FROM THE KERNEL SPACE TO
A USER PROCESS IN THE USER SPACE

N 210 Y,

4 N

EXECUTE THE REDIRECTED DEVICE DRIVER OPERATION IN
THE EXECUTION ENVIRONMENT IN THE USER SPACE
715

FIG. 7

U.S. Patent Jul. 5, 2016 Sheet 12 of 12 US 9,384,015 B2

00

802
| 830
| mmmmm e L . .
PROCESSING |_— 804 '\ OPERATING SYSTEM |
UNIT B e et b !
b e o832
808 806 ! | APPLICATIONS |
/ SYSTEM i 834
______________ ,
MEMORY/Vﬂ :____]‘_J_O_D_({l-lE-:‘S-v---|
836
<« | vonrvoL | i = L0000,
i DATA I
v Al
voratie H— 812 '
r———-) — _+ _
824 | A8 - - 814
v ~ . e —
INTERFACE INTERNAL HDD I\EXT ERNAL HDD,I
M_ 816 —_—— . — —
826 FDD - a18
INTERFACE o v
@ 820 844
) INTERFACE . O AL MONTTOR
Hi‘-’ DRIVE_ | | g % 838
846 pisk V]
F— KEYBOARD
- | 4p4PTOR [840
£ %2 wiRED/WIRELESS) MOUSE
INPUT [®
| DEVICE)= 858 = 854 V= 848
INTERFACE |« » MODEM |« » WAN [« REMOTE
COMPUTER(S)
[~ 836 L~ 852
| NETWORK |, J v s 850
ADAPTOR (WIRED/WIRELESS) <>
|| MEMORY/
STORAGE

FIG. 8

US 9,384,015 B2

1

TECHNIQUES FOR DYNAMICALLY
REDIRECTING DEVICE DRIVER
OPERATIONS TO USER SPACE

TECHNICAL FIELD

Embodiments described herein generally relate to redirect-
ing device driver functions to user space on computing
devices. In particular, embodiments relate to redirecting
binary files of device driver functions to user space for appli-
cation debugging and testing tools and techniques.

BACKGROUND

A device driver is typically a relatively small piece of
software that runs in the kernel space of an operating system
to allow user applications to communicate with a peripheral
device or hardware of a computing system. For example,
printers typically come accompanied with drivers that when
installed on a computing system tells the operating system
exactly how to print information on a page. In another
example, sound card drivers tell your software exactly how to
translate data into audio signals that the card can output to a
set of speakers. The same applies to video cards, keyboards,
monitors, etc.

Some unique aspects of device drivers make them difficult
to develop. For example, device driver are much harder to
debug and test because they are generally extensions of the
kernel and run in kernel space. As opposed to user applica-
tions that function in user space and have many mature debug-
ging and testing tools, device driver debugging tools are lim-
ited. Even today, one of the most effective ways to debug a
device driver is to add a line of code to print out variables or
other information onto a display for a developer to see for
debugging purposes. This and other techniques tend to be
time consuming and not adequate for today’s short develop-
ment time requirements.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are illustrated by way of
example, and not by way of limitation, in the figures of the
accompanying drawings in which like reference numerals
refer to similar elements.

FIG. 1 illustrates a system overview of a computer system
for a first embodiment.

FIG. 2 illustrates an exemplary embodiment of a device
driver operation redirection system.

FIG. 3 illustrates a flow diagram to redirect a device driver
operation to user space.

FIG. 4 illustrates a flow diagram to control a redirection
and execution of a device driver operation in user space.

FIGS. 5A-5E illustrate a flow diagram for handling an
interrupt for a redirected device driver operation.

FIG. 6 illustrates an embodiment of a computer system
with message channel control.

FIG. 7 illustrates a process for device driver redirection
according to one embodiment.

FIG. 8 illustrates an embodiment of a first computing archi-
tecture.

DETAILED DESCRIPTION

As previously discussed, one of the main issues during
device driver development is debugging and testing. In addi-
tion to having less than adequate tools for debugging, device
driver errors typically cause a complete computer system to

10

20

25

30

35

40

45

50

55

60

65

2

crash or fail. These errors generally require a complete system
reboot to recover from the problem and add even more time to
development of the driver. As with all products longer devel-
opment times cause businesses to lose money. Many of these
device manufactures have short time to market requirements,
and thus, the development time for device drivers is an impor-
tant part of the device development process.

One direction to solve these and other device driver devel-
opment issues is to develop the whole device driver in user
space so that device driver developers can utilize the debug-
ging and testing tools typically associated with user space
programming. Some operating systems provide user-level
driver frameworks to develop device drivers. For example,
Linux® and Windows® provide user-space input/output
(UIO) and the user mode driver framework (UMDF), respec-
tively. There are also some similar research projects for cre-
ating a framework to execute the device driver in user space
including MicroDrivers® and Framework of User-Space
Drivers® (FUSD). However, only a limited number of
devices and kernel functions are supported in these frame-
works and are not sufficient for quick device driver develop-
ment. Moreover, these user-level driver frameworks are gen-
erally not compatible with kernel level driver frameworks.
Thus, existing device drivers developed in a kernel level
driver framework have to be rewritten to take advantage of
these user space driver frameworks.

Another approach to support user space development of
device drivers is to replicate the kernel services in the user
space such that the device drivers based on kernel level driver
frameworks can also run in user space. One example follow-
ing this approach is the Device Driver Framework® (DDE).
This approach is also not sufficient and is generally too com-
plex because many kernel services and their application pro-
gramming interfaces (APIs) change from version to version.
Furthermore, many APIs of device drivers themselves can be
called by other device drivers. Since they are exported by
drivers themselves when the drivers are loaded, they cannot
be implemented in advance in the user space environment.

These and other issues can be solved by dynamically redi-
recting device driver functions from the kernel space to a user
process in the user space. Further, these redirected device
driver functions executing in the user processes can call ker-
nel services from the use space when required. The embodi-
ments of device driver development described herein have
many advantages of the previously discussed approaches. For
example, the device drivers are developed with the original
kernel driver framework, and thus, do not need to be rewritten
for a different framework in user space. Moreover, only the
binary files of the device driver are used during redirection, as
opposed to developing the entire device driver in a user space
framework. The embodiments described herein have no limi-
tations for the redirected functions to call kernel services from
the user space. Therefore, there is no rewriting of the device
drivers and no additional time is spent learning a different
framework.

Another advantage of the embodiments described herein is
that the entire device driver does not need to run in the user
space. Instead, only one or several functions of the device
driver may be redirected to user processes in the user space.
Furthermore, different device driver functions can be redi-
rected to separate and different user processes. Therefore,
different device driver functions can be targeted during driver
development and debugging. Finally, the redirected device
driver functions may be reverted back to the kernel space for
execution during the debugging and development period.
Thus, these flexibilities provide many different choices for
developers while testing and debugging device drivers.

US 9,384,015 B2

3

With general reference to notations and nomenclature used
herein, the detailed description that follows may be presented
in terms of program procedures executed on a computer or
network of computers. These procedural descriptions and
representations are used by those skilled in the art to most
effectively convey the substance of their work to others
skilled in the art.

A procedure is here and is generally conceived to be a
self-consistent sequence of operations leading to a desired
result. These operations are those requiring physical manipu-
lations of physical quantities. Usually, though not necessarily,
these quantities take the form of electrical, magnetic or opti-
cal signals capable of being stored, transferred, combined,
compared, and otherwise manipulated. It proves convenient
at times, principally for reasons of common usage, to refer to
these signals as bits, values, elements, symbols, characters,
terms, numbers, or the like. It should be noted, however, that
all of these and similar terms are to be associated with the
appropriate physical quantities and are merely convenient
labels applied to those quantities.

Further, the manipulations performed are often referred to
in terms, such as adding or comparing, which are commonly
associated with mental operations performed by a human
operator. No such capability of a human operator is necessary,
or desirable in most cases, in any of the operations described
herein that form part of one or more embodiments. Rather, the
operations are machine operations. Useful machines for per-
forming operations of various embodiments include general-
purpose digital computers or similar devices.

Various embodiments also relate to apparatus or systems
for performing these operations. This apparatus may be spe-
cially constructed for the required purpose or it may comprise
a general-purpose computer as selectively activated or recon-
figured by a computer program stored in the computer. The
procedures presented herein are not inherently related to a
particular computer or other apparatus. Various general-pur-
pose machines may be used with programs written in accor-
dance with the teachings herein, or it may prove convenient to
construct more specialized apparatus to perform the required
method steps. The required structure for a variety of these
machines will appear from the description given.

FIG. 1 illustrates a general overview of an exemplary com-
puting architecture 100 including a user space 102, a kernel
space 104 and hardware 106. In general, programs or appli-
cations normally run in the user space 102 and the kernel or
the core of an operating system such as Linux®, Windows®,
Apple OS®, etc., runs in the kernel space 104. In various
embodiments, the user space 102 may include all system
resources not specifically included in kernel space 104. For
example, the user space 102 may include applications for a
user to use and libraries to operate the applications. Each
application may include a one or more processes that are
initiated in and operate in the user space. Typically, each
application may be allocated physical memory or central
processing unit (CPU) time, to utilize and is controlled by the
kernel in the kernel space.

In various embodiments, the kernel running in the kernel
space 104 controls access to components of a computing
system, such as the computing processor unit (CPU), the
memory, and other devices or peripherals that may be con-
nected to or coupled with the computing system. The kernel in
the kernel space 104 is the core of the operating system and
normally has full access to all memory and machine hard-
ware. Further, a device driver normally operates in the kernel
space 104 and generally also has full access to system
resources. In addition and as previously discussed, a device
driver is typically developed in the kernel space 104. How-

10

15

20

25

30

35

40

45

50

55

60

65

4

ever, as discussed above, developing the device driver in the
kernel space 104 has drawbacks including inadequate debug-
ging and testing tools.

FIG. 2 illustrates an embodiment of a device driver opera-
tion redirection system 200. The system 200 may have a
number of modules to configure, monitor and control device
driver function or operation or operation redirection includ-
ing a user space control module 202, a channel control mod-
ule 204, a kernel space control module 206, an interrupt
handler module 208, a device driver redirection module 210
and an environment configuration and control module 210.
Further, the environment configuration and control module
210 may include a register control module 222, a memory
control module 224 and a privilege control module 226.

In various embodiments, the user space control module
202 may control and monitor various aspects of one or more
instructions of the redirected device driver operation or func-
tion in user space. As will be discussed in more detail below
with respect to FIG. 3, the device driver function or operation
or operation will be redirected to the user space for execution
by copying instructions in one or more binary files of the
function or operation or operation to a user process and
executing the user process in user space. The user process
may be one or more processes executed in the user space by
the user space control module 202 based on information
received from the kernel space control module 206. The user
space control module 202 may monitor and control these one
or more user processes to ensure that they are executing
properly. Moreover, the user space control module 202 may
monitor user processors to determine if they have crashed or
failed and notify the kernel space control module 206.

The user space control module 202 may also determine
when the user process(es) and device driver function or opera-
tion have completed processing in the user space. In some
embodiments, the user space control module 202 may send
messages to the kernel space control module 206 via the
channel control module 204 indicating that the user process
(es) and device driver function or operation have crashed or
processing has ended.

In some embodiments, the user space control module 202
may also determine and provide the interrupt handler module
208 information when an interrupt is triggered by one of the
instructions of a redirected device driver function or opera-
tion. As will be discussed in more detail with respect to FIGS.
3 and 4, one or more instructions of the redirected device
driver function or operation may be modified to trigger an
interrupt so that they may be processed in the kernel space.

In one example, an interrupt may be generated when an
instruction wants to access kernel space memory. The user
space control module 202 may determine the kernel space
address based on the instruction and may send the informa-
tion to the interrupt handler module 208 for further process-
ing of the instruction and the generated interrupt. In another
example, a privileged instruction trying to execute in the user
space may generate an interrupt. The user space control mod-
ule 202 may send the privileged instruction to the interrupt
handler module 208 for further processing in the kernel space.
In a third example, an interrupt may be generated when an
instruction calls a kernel function or operation or another
device driver function or operation. The user space control
module 202 may determine the address of the called function
or operation based on the instruction and send the address to
the interrupt handler module 208 for further processing.

In some embodiments, the address of the called function or
operation may be determined directly from the instruction
calling the function or operation or may need to be calculated
by the user space control module 202. More specifically, if the

US 9,384,015 B2

5

function or operation call is a far function or operation call,
such as a call to a function or operation located in a different
segment than the current code segment, the instruction will
contain the absolute address of this function. The absolute
address of the called instruction may be sent directly to the
interrupt handler module 208 without any calculation needed.
However, if the function call is a near function call, such as
a call to a function within the current code segment (the
segment currently pointed to by the code segment (CS) reg-
ister), only the relative address is in the instruction and the
address to send to the interrupt handler module 208 will need
to be calculated by the user space control module 202. More-
over the current instruction pointer has been changed during
the redirection of the device driver function, and therefore, the
relative address in the instruction will be incorrect. However,
the target address of the called function may be based on the
kernel address of the redirected device driver function and the
user space address of the redirected device driver function by
utilizing the following formula:
target_address=kernel_address_redirected_function+
current_instruction_pointer—user_address_redi-

rected_function)+relative_address+length_call
instruction;

the target_address is the address of the function called by
the redirected device driver function;

the kernel address_redirected_function is the address of
the redirected device driver function or operation in the kernel
space;

the current_instruction_pointer is the current instruction
pointer of the user process when the instruction initiates the
function call from the EIP instruction pointer register;

the user_address_redirected_function is the address of the
redirected device driver function or operation in the user
space;

the relative_address is the relative address in the instruction
that called the kernel or device driver function or operation;
and

the length_call_instruction is the total length of the call
instruction.

As previously discussed, the user space control module
202 may determine the target address of the called function
based on the above-recited formula and send this information
to the interrupt handler module 208 for further processing.

In various embodiments, the device driver redirection sys-
tem 200 may include a channel control module 204 to com-
municate messages and information between the various
modules of the system. The channel control module 204 may
also be used during debugging and testing of the device driver
function or operation. For example, the channel control mod-
ule 204 may determine that calls to kernel functions or other
device driver functions follow the correct calling rules for the
kernel services or other device driver functions and report this
to the developer.

In various embodiments, the channel control module 204
may pass information in messages between the user space
control module 202, the kernel space control module 206
and/or the interrupt handler module 208. The information
may include address information to access kernel memory,
privileged instructions for execution in the kernel space, and
an address of a kernel function or operation or other device
function or operation called by the redirected device driver
function or operation. For example, the channel control mod-
ule 204, may communicate the kernel memory address
between the user space control module 202, the interrupt
handler module 208, and the kernel space control module 206
when the redirected device driver function or operation tries
to access kernel memory. In another example, channel control

20

25

40

45

55

6

module 204, may pass a privileged instruction between the
user space control module 202, the interrupt handler module
208, and the kernel space control module 206 when a privi-
leged instruction requires execution in the kernel space. In a
third example, the channel control module 204 may commu-
nicate the address of a target function called between the user
space control module 202, the interrupt handler module 208,
and the kernel space control module 206. Various embodi-
ments are not limited to these examples, and the channel
control module 204 may pass any information between any of
the modules.

In some embodiments, the device driver redirection system
200 may include a kernel space control module 206, to man-
age and control various aspects of the device driver function
or operation redirection and device driver function or opera-
tion processing in the kernel space. More particularly, the
kernel space control module 206 include a kernel control
operation that may assist in the configuring the execution
environment including storing registers in memory to recover
the execution environment, determine the context the in
which the redirected device driver function or operation is
processing in, and process actions from the interrupt handler
module 208. These and other details will be discussed more
specifically with respect to the flow diagrams of FIGS. 3, 4
and SA-E.

The interrupt handler module 208 handles interrupts gen-
erated or initiated by instructions of the redirected device
driver function or operation. More specifically, the interrupt
handler module 208 may determine the cause of the interrupt
and initiate the appropriate action to process the instruction
causing the interrupt. In various embodiments, the interrupt
handler module 208 may determine if the cause of the inter-
rupt is one of the following instructions: the instruction is
trying to access kernel space memory, a privileged instruction
is trying to execute in user space, the instruction is a call to a
kernel function or operation or another device driver function
or operation, or some other type of exception.

In various embodiments, the interrupt handler module 208
may receive and pass information between the user space
control module 202 and the kernel space control module 206
to process the instruction causing the interrupt. For example,
the interrupt handler module 208 may receive an address of
the kernel memory address, the privileged instruction, or the
address ofthe called function or operation from the user space
control module 202 and then pass this information to the
kernel space control module 206 for further processing.

In addition, the interrupt handler module 208 may receive
the results of the processed instruction from the kernel space
control module 206 and pass the results to the user space
control module 202 so that the next instruction may be pro-
cessed in user space. For example, the interrupt handler mod-
ule 208 may communicate the contents of the kernel memory
or any return values to the user space control module 202. In
some embodiments, the interrupt handler module 208 may set
registers with the return value(s) and set the instruction
pointer of the user process to the next instruction to be pro-
cessed once the kernel space control module 206 has com-
pleted processing the action. These and other details are
explained more fully with respect to FIGS. 5A-5E.

The device driver redirection module 210 may control and
execute device driver redirection for one or more functions of
the device driver. More specifically, the device driver redirec-
tion module 210 may make a copy of an instruction in one or
more binary files of a device driver function or operation for
redirection. The copy of the instruction may be copied to one
or more user processes for execution in user space. Further,
the device driver redirection module 210 may create or gen-

US 9,384,015 B2

7

erate a function or operation to call the kernel control opera-
tion of the kernel space control module 206 to execute the
device driver function or operation redirection.

In various embodiments, the generated function or opera-
tion may be called or initiated by the original instructions in
binary files of the device driver function or operation for
redirection. In particular, the original instructions in the
binary files may be modified or changed such that the begin-
ning instructions call or jump to the generated function or
operation to stop the processing of the function or operation in
the kernel space and to initiate redirection to the user space.

The device driver redirection module 210 may also deter-
mine if any of the copied instructions require an interrupt
command so that control can be taken over of the instruction
by the interrupt handler module 208 and the instruction can be
processed by the kernel space control module 206. The device
drive redirection module 210 may parse the copied instruc-
tion and determine if any of the instructions require access to
kernel memory, are privileged instructions, or call a kernel
function or operation or another device driver function or
operation. If the device driver redirection module 210 deter-
mines that an instruction requires processing by the kernel
space control module 206, the device driver redirection mod-
ule 210 will change the first byte of the instruction to an
interrupt command to generate an interrupt.

In one or more embodiments, the device driver function or
operation for redirection cannot be executed in user space and
must be executed in kernel space. For example, when a func-
tion or operation is in atomic context it must be executed in
kernel space because various actions that may occur in user
space cannot occur while the function or operation is execut-
ing in an atomic context. Device driver functions generally
run in one of two fundamental contexts, atomic context and
process context. Process context reigns when the kernel is
running directly on behalf of a user-space process, the func-
tion or operation which implements system calls is one
example. When the kernel is running in process context, it is
allowed to go to sleep if necessary. But when the kernel is
running in atomic context, things like sleeping are not
allowed. Functions which handle hardware and software
interrupts are examples of functions in atomic context. In
these cases when the function or operation is in atomic con-
text, the device driver redirection function or operation 210
may receive information from the kernel space control mod-
ule 206 to revert the device driver function or operation back
to operate in kernel space. These and other details are dis-
cussed below with respect to FIG. 3.

The device driver redirection system 200 may also include
an environment configuration and control module 220 to con-
figure the execution environment in user space for the device
driver function or operation(s). The environment configura-
tion and control module 220 may be initiated by the kernel
control operation to configure the environment. To execute
the one or more binary files of the device driver function or
operation, the execution environment must be the same in
user space as it is in kernel space. The environment configu-
ration and control module 220 may maintain the same envi-
ronment by transferring information from the kernel space to
the user space for the one or more user processes. Further and
as previously discussed, some instruction may be required to
run in the kernel space and are handled by the interrupt
handler module 208.

The executing environment includes registers, memory
and privilege level(s) to be maintained. In some embodi-
ments, the environment configuration and control module
220 may include a register control module 222 to control the

10

15

20

25

30

35

40

45

50

55

60

65

8

registers, a memory control module 224 to control the
memory, and a privilege control module 226 to control the
privilege level.

With respect to the register control module 222, many
registers used by the device driver must be maintained and
configured by the register control module 222. These regis-
ters include general purpose registers, stack registers, seg-
ment registers and the EIP instruction pointer register.

The general purpose registers may include and are avail-
able to store any transient data required by the device driver.
For example, when the device driver is interrupted its state,
i.e. the value of the registers such as the program counter,
instruction register or memory address register—may be
saved into the general purpose registers, ready for recall when
the device driver is ready to start again. These general purpose
registers used to transfer parameters and return values must
be stored in memory and transferred between the kernel in
kernel space and the corresponding user process in user space
by the register control module 222.

The register control module 222 may also maintain the
stack registers the same between the kernel and the user
processes by sharing the same kernel stack. The stack regis-
ters are to keep track of a call stack and include the extended
stack pointer register (ESP) and the extended base pointer
register (EBP). These registers may be changed during runt-
ime or execution of the device driver and thus sharing the
stack between the kernel and user process insures that the
registers store the correct data. In addition, the stack registers
may also store parameters and return values. In these circum-
stances, the parameters and return values may be transferred
between the kernel and the user process.

The register control module 222 must also maintain the
segment registers. Segment registers store segment values.
There are four main segment registers including the code
segment (CS) which contains the segment of the current
instruction, the stack segment (SS) contains the stack seg-
ment, data segment (DS) is the segment used by default for
most data operations, and ES is an extra segment register.
These registers are usually set at the beginning and kept
unchanged during the execution of the device driver. More-
over, these segment registers are maintained the same in both
kernel space and user space. However, some segment regis-
ters such as the FS general purpose segment register is main-
tained differently in the kernel space and user space. These
segment registers cannot be changed in the user space. There-
fore, instructions of the device driver function or operation
that utilize these segments must be interrupted, as discussed
above, and run in the kernel space.

The EIP instruction pointer register stores the program
counter and the current instruction address for execution. The
EIP instruction pointer changes when the binary files are
copied to the user process from the kernel space. Thus, func-
tions that utilizing relative addressing and near function or
operation calls need to be interrupted and controlled by the
kernel space control module 206 and the interrupt handler
module 208. The register control module 222 may send infor-
mation including the current instruction to the user space
control module 202 and the interrupt handler module 208 to
determine the target address for the instruction implementing
relative addressing and/or the near function or operation call.

The environment configuration and control module 220
may also include a memory control module 224 to coordinate
access to the memory and input/output (I/O) ports of the
computing system. There are three main parts of memory the
device driver may access, the kernel memory space, the user
memory space and /O ports. All data space accessed by the
redirected device driver function or operation including the

US 9,384,015 B2

9

stack space, the heap space, and data segments are located in
the kernel memory space. The kernel memory space is shared
among all user processes in the user spaces. Accessing rights
must be granted to the user process to access this kernel
memory space. The memory control module 224 may grant
the accessing rights of the related memory pages to the cor-
responding user processes during execution of the redirected
device driver function or operation.

In some embodiments, if a device driver function or opera-
tion is called from a user process by system calls, the user
space memory of this process can be accessed in the function
or operation. However, when the device driver is redirected to
be executed in another user process, the user space can longer
be accessed because the process context has changed. Insome
instances, the memory control module 224 may use special
kernel application programming interfaces (APIs), e.g. copy-
_from_userand copy_to_user, for manipulating user memory
of'the caller process. When these functions are called from the
redirected functions an interrupt can be generated and the
original process context can be used for execution in the
kernel space.

With respect to /O ports, these instructions are typically
not permitted to be executed in user processes. However,
permission may be granted by the memory control module
224 operating with root access and utilizing system calls such
as ioperm to set port input/output permissions and iopl to
change 1/0O privilege level to allow one or more user processes
access to an /O port. Thus, the memory control module 224
may utilize these system calls when instructions accessing
1/0 ports are executed.

The environment configuration and control module 220
may include a privilege control module 226 to manage
instructions of the redirected device driver function or opera-
tion that are privileged. Generally, the privilege level of auser
process in user space is lower than the privilege level of the
kernel space. Therefore, privileged instructions requiring a
higher privilege level than what the user process is operating
in will generate an interrupt and will be executed by the kernel
space control module 206, as previously discussed. The privi-
lege control module 226 may provide these instructions to the
user space control module 202 and the interrupt handler mod-
ule 208 during execution for further processing.

FIG. 3 illustrates a process flow diagram 300 for a device
driver function or operation redirection in an exemplary
embodiment. As previous discussed, device driver functions
may be dynamically redirected during a debugging and test-
ing phase of driver development. In various embodiments,
instructions in a binary file of one or more device driver
functions may be redirected from the kernel space to the user
space while utilizing a user process as shown in process flow
300. More specifically, a start address and a length of a device
driver function to be redirected to the user space may be
looked up in a table at block 305. Moreover, the kernel
address and user address for the redirected function may be
determined by looking up the information in a table by uti-
lizing the current instruction pointer. Further, at block 305, a
copy of instructions in one or more binary files associated
with the device driver function for redirection may be copied
to a user process for operation in the user space.

At block 310, a function or operation may be generated to
call a kernel control operation. The generated function or
operation may be a temporary function or operation that calls
the kernel control operation with the processing identification
(ID) of the user process the one or more binary files were
copied to in block 305 as parameter. In addition, the generated
function or operation may also include the redirected device
driver function or operation address in user space as a param-

10

15

20

25

30

35

40

45

50

55

60

10

eter when calling the kernel control operation. The redirected
device driver function or operation address in user space may
be based on and determine from the user process.

At block 315, the beginning instructions of the original
binary file in the kernel space may be saved in memory and
changed to instructions to jump to or call the generated func-
tion or operation of block 310. For example, the instructions
may be changed to a jump (JMP) command. Thus, when the
original binary file is called or initiated in the kernel space the
generated function or operation is called to initiate the device
driver function or operation in user space instead of proceed-
ing with the device driver function or operation executing in
the kernel space. Furthermore, the original instructions of the
binary file may be saved for later use, such as, when the
redirected device driver function or operation is reverted back
to the kernel space.

At block 320, the copied binary file may be analyzed to
determine if any of the instructions require handling by the
interrupt handler module. For example, redirected device
driver instructions that request access to kernel memory may
be handled by the interrupt handler module. In another
example, a privilege instruction of the redirected device
driver instructions requires execution in the kernel space and
thus must be handled by the interrupt handler module. In a
third example, an instruction calling a kernel function or
operation or another device driver function or operation may
also require handling by the interrupt handler module. These
and other details will be discussed further with respect to
FIGS. 5A-5E.

Once an instruction is determined to require interrupt han-
dling, the instruction may be stored in memory and one or
more bytes of the instruction of the function or operation may
be changed to initiate a interrupt. For example, the first byte of
the instruction may be changed to Interrupt 3 (INT3) com-
mand, wherein the INT3 instruction is used for executing a
software-generated call to an interrupt handler module 208.

Once block 320 completes, the device driver function or
operation may be redirected to a user process and is ready for
execution in the user space. However, in some embodiments,
the redirected device driver function or operation may be
reverted back to the kernel space for execution. For example,
the device driver function or operation may be an atomic
context and requires execution in the kernel space. Thus,
optional block 325 may be implemented to revert the redi-
rected device driver function or operation back to the kernel
space for execution. More specifically, the stored instructions
of'the original binary file in the kernel space may be restored
from memory and the original binary file of the device driver
function or operation may be permitted to execute in the
kernel space.

FIG. 4 illustrates a flow diagram for a kernel control opera-
tion for the redirected device driver function or operation. In
various embodiments, the kernel control operation may be
part of the kernel control module 206. However, various
embodiments are not limited in this manner, and the kernel
control operation may be part of any module and executed by
a processor component. The kernel control operation may be
used to control various aspect of the redirected device driver
function or operation, as will be discussed below. The kernel
control operation may be initiated by a function or operation
call from the generated function or operation discussed above
with respect to block 310 of FIG. 3. The generated function or
operation may call and the kernel control operation may be
initiated with the process ID of the user process of the redi-
rected device driver function or operation and the redirected
device driver function or operation user space address as
parameters at block 402.

US 9,384,015 B2

11

In some embodiments, the execution environment, in the
user space, may be configured to execute the redirected
device driver function or operation at block 404 by utilizing
the environment configuration and control module 220. In
some embodiments, the execution environment may be con-
figured at any time before the execution of the redirected
device driver function or operation in the user space including
before the initiating of the kernel control operation. As part of
the execution environment configuration process, register
information, memory information, and privilege level infor-
mation may be determined, configured and stored, as dis-
cussed in more detail with respect to the environment con-
figuration and control module 220.

At block 406, the context of the redirected device driver
function or operation is determined. More specifically, if the
redirected device driver function or operation is in an atomic
context, the redirected device driver function or operation is
reverted back to execute in the kernel space at block 408.
However, if the redirected device driver function or operation
is in a process context the driver function or operation is
initiated in the user space at block 410.

Once the redirected device driver function or operation is
initiated and executing in the user space, the kernel control
operation may enter a sleep state and wait for a message from
the user process in the user space. As previously discussed,
the user process and user space may be controlled and man-
aged by the user space control module 202. Therefore, the
kernel control operation may receive a message from the user
space control module 202 via the channel control module
204. The message may include information to initiate an
action for the kernel control operation to respond to or an end
message indicating that the redirected device driver function
or operation execution has completed.

Atblock 414, if the message includes information indicat-
ing that it is a end message, the returned values from the user
space control module 202 and user process are received by the
kernel space control space 206 and are set in their correspond-
ing registers used to store the return values at block 416.

However if the message includes information indicating
that it is an action message or not an end message at block
414, the kernel control operation determines the action that
needs to be taken and completes the action. For example, the
action message may have been received based on an interrupt
generated by an instruction executing in the user space. The
action message may indicate that the redirected device driver
function or operation wishes to access kernel memory,
execute a privileged instruction in user space or is a kernel
function or operation call. Moreover, the kernel control
operation in the kernel space control module 206, may receive
information from the interrupt handler module 208 and may
complete the action based on the information. Further, the
kernel control operation may return the results of the action to
the user process and/or interrupt handler module 208.

In various embodiments, the kernel control operation may
receive information from the interrupt handler module 208
indicating that the redirected device driver function or opera-
tion desires to access kernel memory, for example. The infor-
mation from the interrupt handler module 208 may include
the address of the location in the kernel memory to be
accessed. The kernel control operation may access the kernel
memory at the address, retrieve its contents, and send the
contents back to the interrupt handler module 208 and user
space control module 202 for further processing.

In another example, the kernel control operation may
receive information from the interrupt handler module 208
indicating that an instruction of the redirected device driver
function or operation is a privileged instruction and requires

10

15

20

25

30

35

40

45

50

55

60

65

12

execution in the kernel space. The kernel control operation
may receive the privileged instruction from the interrupt han-
dler and execute the privileged instruction in the kernel space.
Further, the kernel control operation may send a reply to the
interrupt handler 208 indicating the processing of the privi-
leged instruction has completed.

In a third example, the kernel control operation may
receive information indicating an instruction of the redirected
device driver function or operation is calling a kernel function
or operation. The kernel control operation may receive the
address of the called kernel function or operation and the
contents of the related registers from the interrupt handler
module 208 and call the kernel function or operation. Further,
the kernel control operation may send a reply to the interrupt
handler module 208 indicating that the kernel function or
operation has been called and completed. Various embodi-
ments are not limited to the above-discussed examples. The
kernel control operation may receive other messages and may
determine and complete other actions required by the redi-
rected device driver function or operation.

FIGS. 5A-5E illustrate an exemplary process flow for han-
dling an interrupt and references the interrupt handler module
208 discussed with respect to FIG. 2. As previously dis-
cussed, various instructions may require special processing
and therefore are manipulated such that they generate an
interrupt. More specifically, the first byte or bytes of the
instruction may be changed to the INT3 instruction so that an
interrupt is generated and can be handled by the interrupt
handler module 208. Atblock 502, an interrupt is triggered by
an instruction initiating the interrupt handler module 208. The
interrupt handler module 208 may determine the cause of the
interrupt based on the instruction for processing.

At block 510, the interrupt handler module 208 may deter-
mine that the redirected device driver function or operation
requires access to kernel space memory. The interrupt handler
module 208 may then send the address of the kernel space
memory for access to the kernel control operation via the
channel control module 204 and wait for a reply from the
kernel control operation at block 512. At block 514, the inter-
rupt handler module 208 may receive a reply from the kernel
control operation including the memory contents of the ker-
nel memory at the address from the kernel control module.
The interrupt may then allow the user space control module
202 and user process to continue to the next instruction for
processing of the redirected device driver function or opera-
tion.

At block 520, the interrupt handler module 208 may deter-
mine that an instruction of the redirected device driver func-
tion or operation is a privileged instruction and requires pro-
cessing by in the kernel space. At block 522, the interrupt
handler module 208 may send the privilege instruction to the
kernel space for execution by the kernel control operation via
the channel control module 204. The interrupt handler mod-
ule 208 may receive a reply from the kernel control operation
including any return value(s)s and an indication that the privi-
leged instruction has been processed in the kernel space at
block 524. At block 526, the interrupt handler module 208
may set the target register of the privileged instruction with
the return value(s). Further, at block 526, the interrupt handler
module 208 may set the current instruction pointer of the
redirected device driver function or operation to skip over the
privileged instruction and the user process may proceed with
processing the function or operation.

In various embodiments at block 530, the interrupt handler
module 208 may determine that an instruction of the redi-
rected device driver function or operation has called a kernel
function or operation or another device driver function or

US 9,384,015 B2

13

operation. At block 532, the interrupt handler module 208
determines the address of the target kernel function or opera-
tion or the other device driver function or operation that is
called based on the instruction. The interrupt handler module
208 then sends the kernel address and the contents of related
registers to the kernel space, and in particular, the kernel
control operation for processing at block 534. The interrupt
handler module 208, at block 536, receives a reply from the
kernel control operation, sets the registers to store the return
value(s) and sets the instruction pointer to skip over the call
instruction of the redirected device driver function or opera-
tion.

At block 540, the interrupt handler module 208 may deter-
mine that an instruction of the redirected device driver func-
tion or operation has generated a default interrupt or excep-
tion to be handled by the regular interrupt or exception
handler. At block 542, the interrupt handler module 208 calls
the default interrupt or exception handler (based on the cause
of the interrupt) with information from the instruction. The
interrupt handler module 208 receives a result from the
default interrupt or exception handler at block 544.

FIG. 6 illustrates a system 600 for communicating mes-
sages between a user space control module 602, a kernel
space control module and a interrupt handler module 608 via
a channel control module 604. The modules of system 600
may be the same modules with corresponding names as illus-
trated in FIG. 2. In various embodiments, the channel control
module 604 may communicate messages and information
between the user space and kernel space including messages
generated in the user space by the interrupt handler module
608 and user space control module 602 to the kernel space
control module 606. For example, the user space control
module 602 may send messages to the kernel space control
module 606 via the channel control module 604 indicating
that the user process(es) and device driver function or opera-
tion have crashed or processing has ended.

In various embodiments, information communicated
between the modules may include address information to
access kernel memory, privileged instructions for execution
in the kernel space, and an address of a kernel function or
operation or other device function or operation called by the
redirected device driver function or operation. For example,
the channel control module 604, may communicate the kernel
memory address between the user space control module 602,
the interrupt handler module 608, and the kernel space control
module 606 when the redirected device driver function or
operation tries to access kernel memory. In another example,
channel control module 604, may pass a privileged instruc-
tion between the user space control module 602, the interrupt
handler module 608, and the kernel space control module 606
when a privileged instruction requires execution in the kernel
space. In a third example, the channel control module 604
may communicate the address of a target function or opera-
tion called between the user space control module 602, the
interrupt handler module 608, and the kernel space control
module 606. In another example, the channel control module
604 may communicate replies and return values from the
kernel space control module 608 to the interrupt handler
module 608 and the user space control module 602. Various
embodiments are not limited to these examples, and the chan-
nel control module 604 may pass any information between
any of the modules. Moreover, FIG. 6 illustrates modules
operating or executing in the user space or kernel space.
However, the modules are not limited in this manner and all or
portions of the modules may execute in either the user space
or the kernel space.

5

10

15

20

25

30

35

40

45

50

55

60

14

FIG. 7 illustrates an embodiment of logic flow 700. The
logic flow 700 may be representative of some or all of the
operations executed by one or more embodiments described
herein. For example, the logic flow 700 may illustrate opera-
tions performed by the systems 100, 200 and 600.

In the illustrated embodiment shown in FIG. 7, the logic
flow 700 may include configuring an execution environment
in a user space for device driver functions including storing
information in memory for the execution at block 705. In
various embodiments, contents of one or more registers may
be transferred to a user process in a user space and access may
be granted to user space memory, kernel space memory and
1/0O ports while configuring the execution environment.

At block 710, the logic flow 700 may include redirecting a
device driver function or operation to the execution environ-
ment in the user space for execution including copying
instructions of the device function or operation from the
kernel space to a user process in the user space. Moreover, the
device driver function or operation may include one or more
instructions in one or more binary files and the binary files
may be copied to a user process for execution in the user
space.

The logic flow 700 may also include executing the redi-
rected device driver function or operation in the execution
environment in the user space. The original device driver
function or operation in the kernel space may be modified
such that the first few instructions are changed to call a gen-
erated function or operation. The generated function or opera-
tion may call a kernel control operation of a kernel space
control module to monitor and execute any processing
required by the redirected device driver function or operation.
The kernel control operation may initiate the redirected func-
tion or operation device driver by passing the start address of
the redirected device function or operation and corresponding
stored registers to a user space control module for execution
of one or more user process.

FIG. 8 illustrates an embodiment of an exemplary comput-
ing architecture 800 suitable for implementing various
embodiments as previously described. In one embodiment,
the computing architecture 800 may comprise or be imple-
mented as part of computing system, such as computing
system 200.

As used in this application, the terms “system”, “module”
and “component™ are intended to refer to a computer-related
entity, either hardware, a combination of hardware and soft-
ware, software, or software in execution, examples of which
are provided by the exemplary computing architecture 800.
For example, a component can be, but is not limited to being,
a process running on a processor, a processor, a hard disk
drive, multiple storage drives (of optical and/or magnetic
storage medium), an object, an executable, a thread of execu-
tion, a program, and/or a computer. By way of illustration,
both an application running on a server and the server can be
a component. One or more components can reside within a
process and/or thread of execution, and a component can be
localized on one computer and/or distributed between two or
more computers. Further, components may be communica-
tively coupled to each other by various types of communica-
tions media to coordinate operations. The coordination may
involve the uni-directional or bi-directional exchange of
information. For instance, the components may communicate
information in the form of signals communicated over the
communications media. The information can be imple-
mented as signals allocated to various signal lines. In such
allocations, each message is a signal. Further embodiments,
however, may alternatively employ data messages. Such data

US 9,384,015 B2

15

messages may be sent across various connections. Exemplary
connections include parallel interfaces, serial interfaces, and
bus interfaces.

The computing architecture 800 includes various common
computing elements, such as one or more processors, multi-
core processors, Co-processors, memory units, chipsets, con-
trollers, peripherals, interfaces, oscillators, timing devices,
video cards, audio cards, multimedia input/output (I/O) com-
ponents, power supplies, and so forth. The embodiments,
however, are not limited to implementation by the computing
architecture 800.

As shown in FIG. 8, the computing architecture 800 com-
prises a processing unit 804, a system memory 806 and a
system bus 808. The processing unit 804 can be any of various
commercially available processors.

The system bus 808 provides an interface for system com-
ponents including, but not limited to, the system memory 806
to the processing unit 8§04. The system bus 808 can be any of
several types of bus structure that may further interconnect to
a memory bus (with or without a memory controller), a
peripheral bus, and a local bus using any of a variety of
commercially available bus architectures. Interface adapters
may connect to the system bus 808 via slot architecture.
Example slot architectures may include without limitation
Accelerated Graphics Port (AGP), Card Bus, (Extended)
Industry Standard Architecture ((E)ISA), Micro Channel
Architecture (MCA), NuBus, Peripheral Component Inter-
connect (Extended) (PCI(X)), PCI Express, Personal Com-
puter Memory Card International 800 may comprise or
implement various articles of manufacture. An article of
manufacture may comprise a computer-readable storage
medium to store logic. Examples of a computer-readable
storage medium may include any tangible media capable of
storing electronic data, including volatile memory or non-
volatile memory, removable or non-removable memory, eras-
able or non-erasable memory, writeable or re-writeable
memory, and so forth. Examples of logic may include execut-
able computer program instructions implemented using any
suitable type of code, such as source code, compiled code,
interpreted code, executable code, static code, dynamic code,
object-oriented code, visual code, and the like. Embodiments
may also be at least partly implemented as instructions con-
tained in or on a non-transitory computer-readable medium,
which may be read and executed by one or more processors to
enable performance of the operations described herein.

The system memory 806 may include various types of
computer-readable storage media in the form of one or more
higher speed memory units, such as read-only memory
(ROM), random-access memory (RAM), dynamic RAM
(DRAM), Double-Data-Rate DRAM (DDRAM), synchro-
nous DRAM (SDRAM), static RAM (SRAM), program-
mable ROM (PROM), erasable programmable ROM
(EPROM), electrically erasable programmable ROM (EE-
PROM), flash memory, polymer memory such as ferroelec-
tric polymer memory, ovonic memory, phase change or fer-
roelectric memory, silicon-oxide-nitride-oxide-silicon
(SONOS) memory, magnetic or optical cards, an array of
devices such as Redundant Array of Independent Disks
(RAID) drives, solid state memory devices (e.g., USB
memory, solid state drives (SSD) and any other type of stor-
age media suitable for storing information. In the illustrated
embodiment shown in FIG. 8, the system memory 806 can
include non-volatile memory 810 and/or volatile memory
812. A basic input/output system (BIOS) can be stored in the
non-volatile memory 810.

The computer 802 may include various types of computer-
readable storage media in the form of one or more lower speed

10

15

20

25

30

35

40

45

50

55

60

65

16

memory units, including an internal (or external) hard disk
drive (HDD) 814, a magnetic floppy disk drive (FDD) 816 to
read from or write to a removable magnetic disk 818, and an
optical disk drive 820 to read from or write to a removable
optical disk 822 (e.g., a CD-ROM or DVD). The HDD 814,
FDD 816 and optical disk drive 820 can be connected to the
system bus 808 by a HDD interface 824, an FDD interface
826 and an optical drive interface 828, respectively. The HDD
interface 824 for external drive implementations can include
at least one or both of Universal Serial Bus (USB) and IEEE
1394 interface technologies.

The drives and associated computer-readable media pro-
vide volatile and/or nonvolatile storage of data, data struc-
tures, computer-executable instructions, and so forth. For
example, a number of program modules can be stored in the
drives and memory units 810, 812, including an operating
system 830, one or more application programs 832, other
program modules 834, and program data 836. In one embodi-
ment, the one or more application programs 832, other pro-
gram modules 834, and program data 836 can include, for
example, the various applications and/or components of a
system.

A user can enter commands and information into the com-
puter 802 through one or more wire/wireless input devices,
for example, a keyboard 838 and a pointing device, such as a
mouse 840. Other input devices may include microphones,
infra-red (IR) remote controls, radio-frequency (RF) remote
controls, game pads, stylus pens, card readers, dongles, finger
print readers, gloves, graphics tablets, joysticks, keyboards,
retina readers, touch screens (e.g., capacitive, resistive, etc.),
trackballs, trackpads, sensors, styluses, and the like. These
and other input devices are often connected to the processing
unit 804 through an input device interface 842 that is coupled
to the system bus 808, but can be connected by other inter-
faces such as a parallel port, IEEE 1394 serial port, a game
port, a USB port, an IR interface, and so forth.

A monitor 844 or other type of display device is also
connected to the system bus 808 via an interface, such as a
video adaptor 846. The monitor 844 may be internal or exter-
nal to the computer 802. In addition to the monitor 844, a
computer typically includes other peripheral output devices,
such as speakers, printers, and so forth.

The computer 802 may operate in a networked environ-
ment using logical connections via wire and/or wireless com-
munications to one or more remote computers, such as a
remote computer 848. The remote computer 848 can be a
workstation, a server computer, a router, a personal computer,
portable computer, microprocessor-based entertainment
appliance, a peer device or other common network node, and
typically includes many or all of the elements described rela-
tive to the computer 802, although, for purposes of brevity,
only a memory/storage device 850 is illustrated. The logical
connections depicted include wire/wireless connectivity to a
local area network (LAN) 852 and/or larger networks, for
example, a wide area network (WAN) 854. Such LAN and
WAN networking environments are commonplace in offices
and companies, and facilitate enterprise-wide computer net-
works, such as intranets, all of which may connect to a global
communications network, for example, the Internet.

When used in a LAN networking environment, the com-
puter 802 is connected to the LAN 852 through a wire and/or
wireless communication network interface or adaptor 856.
The adaptor 856 can facilitate wire and/or wireless commu-
nications to the LAN 852, which may also include a wireless
access point disposed thereon for communicating with the
wireless functionality of the adaptor 856.

US 9,384,015 B2

17

When used in a WAN networking environment, the com-
puter 802 can include a modem 858, or is connected to a
communications server on the WAN 854, or has other means
for establishing communications over the WAN 854, such as
by way of the Internet. The modem 858, which can be internal
or external and a wire and/or wireless device, connects to the
system bus 808 via the input device interface 842. In a net-
worked environment, program modules depicted relative to
the computer 802, or portions thereof, can be stored in the
remote memory/storage device 850. It will be appreciated
that the network connections shown are exemplary and other
means of establishing a communications link between the
computers can be used.

The computer 802 is operable to communicate with wire
and wireless devices or entities using the IEEE 802 family of
standards, such as wireless devices operatively disposed in
wireless communication (e.g., IEEE 802.11 over-the-air
modulation techniques). This includes at least Wi-Fi (or
Wireless Fidelity), WiMax, and Bluetooth™ wireless tech-
nologies, among others. Thus, the communication can be a
predefined structure as with a conventional network or simply
an ad hoc communication between at least two devices. Wi-Fi
networks use radio technologies called IEEE 802.11x (a, b, g,
n, etc.) to provide secure, reliable, fast wireless connectivity.
A Wi-Fi network can be used to connect computers to each
other, to the Internet, and to wire networks (which use IEEE
802.3-related media and functions).

The various elements of the computing devices as previ-
ously described with reference to FIGS. 1-8 may comprise
various hardware elements, software elements, or a combi-
nation of both. Examples of hardware elements may include
devices, logic devices, components, processors, micropro-
cessors, circuits, processors, circuit elements (e.g., transis-
tors, resistors, capacitors, inductors, and so forth), integrated
circuits, application specific integrated circuits (ASIC), pro-
grammable logic devices (PLD), digital signal processors
(DSP), field programmable gate array (FPGA), memory
units, logic gates, registers, semiconductor device, chips,
microchips, chip sets, and so forth. Examples of software
elements may include software components, programs, appli-
cations, computer programs, application programs, system
programs, software development programs, machine pro-
grams, operating system software, middleware, firmware,
software modules, routines, subroutines, functions, methods,
procedures, software interfaces, application program inter-
faces (API), instruction sets, computing code, computer code,
code segments, computer code segments, words, values, sym-
bols, or any combination thereof. However, determining
whether an embodiment is implemented using hardware ele-
ments and/or software elements may vary in accordance with
any number of factors, such as desired computational rate,
power levels, heat tolerances, processing cycle budget, input
data rates, output data rates, memory resources, data bus
speeds and other design or performance constraints, as
desired for a given implementation.

The detailed disclosure now turns to providing examples
that pertain to further embodiments. Examples one through
fifty (1-50) provided below are intended to be exemplary and
non-limiting.

In a first example, an apparatus may include a processor
component and an environment configuration and control
module for execution on the processor component to config-
ure an execution environment in a user space for device driver
operation. The apparatus may also include a device driver
redirection module for execution on the processor component
to redirect a device driver operation to the execution environ-
ment in the user space for execution including copying

10

20

25

30

35

40

45

50

55

60

65

18

instructions of the device driver operation from the kernel
space to a user process in the user space, and a user space
control module for execution on a processor component to
execute the redirected device driver operation in the execu-
tion environment in the user space.

Inasecond example and in furtherance of the first example,
an apparatus may include storing information for the execu-
tion environment, the information comprising one or more of
register information, memory information, and privilege
information, and the configuring comprising transferring the
stored information from the kernel space to the user process
of'the user space for execution of the redirected device driver
operation.

In a third example and in furtherance of any of the previous
examples, an apparatus may include the device driver redi-
rection module to generate an operation to call a kernel con-
trol operation with a process identification (ID) of the user
process and a redirected operation address for the redirected
device driver operation and to change one or more of the
instructions in the kernel space to initiate the generated opera-
tion.

In a fourth example and in furtherance of any of the previ-
ous examples, an apparatus may include the device driver
redirection module to determine when copied instructions
require handling in the kernel space and to assign an interrupt
to the copied instructions to create an exception.

In a fifth example and in furtherance of any of the previous
examples, an apparatus may include a kernel space control
module for execution on the processor component including
the kernel control operation to receive a call message from the
created operation with the process ID and the redirected
operation address, and the user space control module to
execute the redirected device driver operation in the user
space based on the process ID and the redirected operation
address received from the kernel control operation.

In a sixth example and in furtherance of any of the previous
examples, an apparatus may include a kernel space control
module including a kernel control operation to determine
when the redirected device driver operation is in an atomic
context, and to execute the device driver operation in the
kernel space.

In a seventh example and in furtherance of any of the
previous examples, an apparatus may include an interrupt
handler module for execution on the processor component to
receive an interrupt when one of the copied instructions
requires handling in the kernel space.

In an eighth example and in furtherance of any of the
previous examples, an apparatus may include the interrupt
handler module to determine when a kernel operation or
device driver operation is called by the redirected device
driver operation based on the interrupt, and to send a call
message to call the kernel operation or the device driver
operation from the kernel space based on the determination.

In a ninth example and in furtherance of any ofthe previous
examples, an apparatus may include the interrupt and excep-
tion handling module to determine the redirected device
driver operation requires access to kernel memory based on
the interrupt, and to send an address to access the kernel
memory from the kernel space and to receive contents of the
kernel memory.

In atenth example and in furtherance of any of the previous
examples, an apparatus may include the interrupt and excep-
tion handling module to determine the copied instruction is a
privileged instruction requiring execution in the kernel space
based on the interrupt, and to send a message to a kernel space
control module to execute the privileged instruction in the
kernel space.

US 9,384,015 B2

19

In eleventh example and in furtherance of any of the pre-
vious examples, an article comprising a computer-readable
storage medium comprising instructions that when executed
enable a computing device to, configure an execution envi-
ronment in a user space for device driver operations, redirect
a device driver operation to the execution environment in the
user space for execution including copying instructions of the
device driver operation from the kernel space to a user process
in the user space, and execute the redirected device driver
operation in the execution environment in the user space.

In a twelfth example and in furtherance of any of the
previous examples, an article comprising a computer-read-
able storage medium comprising instructions that when
executed enable a computing device to store instructions for
an execution environment, the information may include one
or more of register information, memory information, and
privilege information, and to transfer the stored information
from the kernel space to the user process of the user space for
execution of the redirected device driver operation.

In a thirteenth example and in furtherance of any of the
previous examples, an article comprising instructions that
when executed enable the computing device to generate an
operation to call a kernel control operation with a process
identification (ID) of the user process and a redirected opera-
tion address for the redirected device driver operation and to
change one or more of the instructions in the kernel space to
initiate the generated operation.

In a fourteenth example and in furtherance of any of the
previous examples, an article comprising instructions that
when executed enable the computing device to determine
when copied instructions require handling in the kernel space
and to assign an interrupt to the copied instructions to create
an exception.

In a fifteenth example and in furtherance of any of the
previous examples, an article comprising instructions that
when executed enable the computing device to receive a call
message from the created operation with the process ID and
the redirected operation address and execute the redirected
device driver operation in the user space based on the process
ID and the redirected operation address received from the
kernel control operation.

In a sixteenth example and in furtherance of any of the
previous examples, an article comprising instructions that
when executed enable the computing device to determine
when the redirected device driver operation is in an atomic
context, and to execute the device driver operation in the
kernel space.

In a seventeenth example and in furtherance of any of the
previous examples, an article comprising instructions that
when executed enable the computing device to receive an
interrupt when one of the copied instructions requires han-
dling in the kernel space.

In a eighteenth example and in furtherance of any of the
previous examples, an article comprising instructions that
when executed enable the computing device to determine
when akernel operation or device driver operation is called by
the redirected device driver operation based on the interrupt,
and to send a call message to call the kernel operation or the
device driver operation from the kernel space based on the
determination.

In a nineteenth example and in furtherance of any of the
previous examples, an article comprising instructions that
when executed enable the computing device to determine the
redirected device driver operation requires access to kernel
memory based on the interrupt, and to send an address to
access the kernel memory from the kernel space and to
receive contents of the kernel memory.

10

15

20

25

30

35

40

45

55

60

65

20

In a twentieth example and in furtherance of any of the
previous examples, comprising instructions that when
executed enable the computing device to determine the cop-
ied instruction is a privileged instruction requiring execution
in the kernel space based on the interrupt, and to send a
message to a kernel space control module to execute the
privileged instruction in the kernel space.

In a twenty-first example and in furtherance of any of the
previous examples, a computer-implemented method may
comprise configuring an execution environment in a user
space for device driver operations, redirecting a device driver
operation to the execution environment in the user space for
execution including copying instructions of the device driver
operation from the kernel space to a user process in the user
space and executing the redirected device driver operation in
the execution environment in the user space.

In a twenty-second example and in furtherance of any of
the previous examples, a computer-implemented method
may comprising storing information for the execution envi-
ronment, the information comprising one or more of register
information, memory information, and privilege information,
and transferring the stored information from the kernel space
to the user process of the user space for execution of the
redirected device driver operation.

In a twenty-third example and in furtherance of any of the
previous examples, a method may include generating a opera-
tion to call a kernel control operation with a process identifi-
cation (ID) of the user process and a redirected operation
address for the redirected device driver operation and to
change one or more of the instructions in the kernel space to
initiate the generated operation.

In a twenty-fourth example and in furtherance of any of the
previous examples, a method may include determining when
copied instructions require handling in the kernel space and to
assign an interrupt to the copied instructions to create an
exception.

In a twenty-fifth example, a method may include receiving
a call message from the created operation with the process ID
and the redirected operation address and executing the redi-
rected device driver operation in the user space based on the
process ID and the redirected operation address received from
the kernel control operation.

In a twenty-sixth example and in furtherance of any of the
previous examples, a method may include determining when
the redirected device driver operation is in an atomic context,
and to execute the device driver operation in the kernel space.

In a twenty-seventh example and in furtherance of any of
the previous examples, a method may include receiving an
interrupt when one of the copied instructions requires han-
dling in the kernel space.

In a twenty-eighth example and in furtherance of any of the
previous examples, a method may include determining when
a kernel operation or device driver operation is called by the
redirected device driver operation based on the interrupt, and
to send a call message to call the kernel operation or the
device driver operation from the kernel space based on the
determination.

In a twenty-ninth example and in furtherance of any of the
previous examples, a method may include determining the
redirected device driver operation requires access to kernel
memory based on the interrupt, and to send an address to
access the kernel memory from the kernel space and to
receive contents of the kernel memory.

In a thirtieth example and in furtherance of any of the
previous examples, a method may include determining the
copied instruction is a privileged instruction requiring execu-
tion in the kernel space based on the interrupt, and to send a

US 9,384,015 B2

21

message to a kernel space control module to execute the
privileged instruction in the kernel space.

In a thirty-first example and in furtherance of any of the
previous examples, an apparatus, may comprise means for
configuring an execution environment in a user space for
device driver operations, means redirecting a device driver
operation to the execution environment in the user space for
execution including copying instructions of the device driver
operation from the kernel space to a user process in the user
space and means for executing the redirected device driver
operation in the execution environment in the user space.

In a thirty-second example and in furtherance of any of the
previous examples, an apparatus may comprise means for
storing information for the execution environment, informa-
tion comprising one or more of register information, memory
information, and privilege information, and the means for
configuring comprising means for transferring the stored
information from the kernel space to the user process of the
user space for execution of the redirected device driver opera-
tion.

In a thirty-third example and in furtherance of any of the
previous examples, an apparatus means for generating a
operation to call a kernel control operation with a process
identification (ID) of the user process and a redirected opera-
tion address for the redirected device driver operation and
means for changing one or more of the instructions in the
kernel space to initiate the generated operation.

In a thirty-fourth example and in furtherance of any of the
previous examples, an apparatus may comprise means for
receiving a call message from the created operation with the
process 1D and the redirected operation address and means
for executing the redirected device driver operation in the user
space based on the process ID and the redirected operation
address received from the kernel control operation.

In a thirty-fifth example and in furtherance of any of the
previous examples, an apparatus may comprise means for
receiving a call message from the created operation with the
process 1D and the redirected operation address and means
for executing the redirected device driver operation in the user
space based on the process ID and the redirected operation
address received from the kernel control operation.

In a thirty-sixth example and in furtherance of any of the
previous examples, an apparatus may comprise means for
determining when the redirected device driver operation is in
an atomic context, and to execute the device driver operation
in the kernel space.

In a thirty-seventh example and in furtherance of any of the
previous examples, an apparatus may comprise means for
receiving an interrupt when one of the copied instructions
requires handling in the kernel space.

In a thirty-eighth example and in furtherance of any of the
previous examples, an apparatus may comprise means for
determining when a kernel operation or device driver opera-
tion is called by the redirected device driver operation based
on the interrupt and means for sending a call message to call
the kernel operation or the device driver operation from the
kernel space based on the determination.

In a thirty-ninth example and in furtherance of any of the
previous examples, an apparatus may comprise means for
determining the redirected device driver operation requires
access to kernel memory based on the interrupt and means for
sending an address to access the kernel memory from the
kernel space and to receive contents of the kernel memory.

In a fortieth example and in furtherance of any of the
previous examples, an apparatus may comprise means for
determining the copied instruction is a privileged instruction
requiring execution in the kernel space based on the interrupt

10

15

20

25

30

35

40

45

50

55

60

65

22

and means for sending a message to a kernel space control
module to execute the privileged instruction in the kernel
space.

In a forty-first example and in furtherance of any of the
previous examples, a computing device to redirect device
driver operation may comprise a processor component, an
environment configuration and control module for execution
on the processor component to configure an execution envi-
ronment in a user space for device driver operations, a device
driver redirection module for execution on the processor
component to redirect a device driver operation to the execu-
tion environment in the user space for execution including
copying instructions of the device driver operation from the
kernel space to a user process in the user space and a user
space control module for execution on a processor component
to execute the redirected device driver operation in the execu-
tion environment in the user space.

In a forty-second example and in furtherance of any of the
previous examples, a computing device may comprise the
environment configuration and control module to store infor-
mation for the execution environment, the information com-
prising one or more of register information, memory infor-
mation, and privilege information, and the environment
configuration and control module to transfer the stored infor-
mation from the kernel space to the user process of the user
space for execution of the redirected device driver operation.

In a forty-third example and in furtherance of any of the
previous examples, a computing device may comprise the
device driver redirection module to generate an operation to
call a kernel control operation with a process identification
(ID) of'the user process and a redirected operation address for
the redirected device driver operation and to change one or
more of the instructions in the kernel space to initiate the
generated operation.

In a forty-fourth example and in furtherance of any of the
previous examples, a computing device may comprise the
device driver redirection module to determine when copied
instructions require handling in the kernel space and to assign
an interrupt to the copied instructions to create an exception.

In a forty-fifth example and in furtherance of any of the
previous examples, a computing device may comprise a ker-
nel space control module for execution on the processor com-
ponent including the kernel control operation to receive a call
message from the created operation with the process ID and
the redirected operation address and the user space control
module to execute the redirected device driver operation in
the user space based on the process ID and the redirected
operation address received from the kernel control operation.

In a forty-sixth example and in furtherance of any of the
previous examples, a computing device may comprise a ker-
nel space control module including a kernel control operation
to determine when the redirected device driver operation is in
an atomic context, and to execute the device driver operation
in the kernel space.

In a forty-seventh example and in furtherance of any of the
previous examples, a computing device may comprise an
interrupt handler module for execution on the processor com-
ponent to receive an interrupt when one of the copied instruc-
tions requires handling in the kernel space.

In a forty-eighth example and in furtherance of any of the
previous examples, a computing device may comprise the
interrupt handler module to determine when a kernel opera-
tion or device driver operation is called by the redirected
device driver operation based on the interrupt, and to send a
call message to call the kernel operation or the device driver
operation from the kernel space based on the determination.

US 9,384,015 B2

23

In a forty-ninth example and in furtherance of any of the
previous examples, a computing device may comprise the
interrupt and exception handling module to determine the
redirected device driver operation requires access to kernel
memory based on the interrupt, and to send an address to
access the kernel memory from the kernel space and to
receive contents of the kernel memory.

In a fiftieth example and in furtherance of any of the pre-
vious examples, a computing device may comprise the inter-
rupt and exception handling module to determine the copied
instruction is a privileged instruction requiring execution in
the kernel space based on the interrupt, and to send a message
to a kernel space control module to execute the privileged
instruction in the kernel space.

Some embodiments may be described using the expression
“one embodiment” or “an embodiment” along with their
derivatives. These terms mean that a particular feature, struc-
ture, or characteristic described in connection with the
embodiment is included in at least one embodiment. The
appearances of the phrase “in one embodiment” in various
places in the specification are not necessarily all referring to
the same embodiment. Further, some embodiments may be
described using the expression “coupled” and “connected”
along with their derivatives. These terms are not necessarily
intended as synonyms for each other. For example, some
embodiments may be described using the terms “connected”
and/or “coupled” to indicate that two or more elements are in
direct physical or electrical contact with each other. The term
“coupled,” however, may also mean that two or more ele-
ments are not in direct contact with each other, but yet still
co-operate or interact with each other.

It is emphasized that the Abstract of the Disclosure is
provided to allow a reader to quickly ascertain the nature of
the technical disclosure. It is submitted with the understand-
ing that it will not be used to interpret or limit the scope or
meaning of the claims. In addition, in the foregoing Detailed
Description, it can be seen that various features are grouped
together in a single embodiment for the purpose of stream-
lining the disclosure. This method of disclosure is not to be
interpreted as reflecting an intention that the claimed embodi-
ments require more features than are expressly recited in each
claim. Rather, as the following claims reflect, inventive sub-
ject matter lies in less than all features of a single disclosed
embodiment. Thus the following claims are hereby incorpo-
rated into the Detailed Description, with each claim standing
onits own as a separate embodiment. In the appended claims,
the terms “including” and “in which” are used as the plain-
English equivalents of the respective terms “comprising” and
“wherein,” respectively. Moreover, the terms “first,” “sec-
ond,” “third,” and so forth, are used merely as labels, and are
not intended to impose numerical requirements on their
objects.

What has been described above includes examples of the
disclosed architecture. Itis, of course, not possible to describe
every conceivable combination of components and/or meth-
odologies, but one of ordinary skill in the art may recognize
that many further combinations and permutations are pos-
sible. Accordingly, the novel architecture is intended to
embrace all such alterations, modifications and variations that
fall within the spirit and scope of the appended claims.

What is claimed is:

1. An apparatus, comprising:

a processor component;

an environment configuration and control module for

execution on the processor component to configure an
execution environment in a user space for device driver
operations to perform debugging and testing;

20

25

30

40

45

60

24

a device driver redirection module for execution on the
processor component to:
redirect a device driver operation for execution in the
execution environment in the user space, the redirec-
tion comprising copying one or more instructions in
one or more binary files for the device driver operation
from the kernel space to a user process in the user
space,

determine whether an instruction of the one or more
instructions copied to the user process requires han-
dling an interrupt handler, and

assign an interrupt to the instruction to create an excep-
tion;

a user space control module for execution on a processor
component to execute the device driver operation in the
execution environment in the user space;

an interrupt handler module for execution on the processor
component to receive the interrupt for the instruction;
and

a kernel space control module for execution on the proces-
sor component to execute the instruction in the kernel
space and revert back to the user space to execute
remaining instructions of the one or more instructions of
the device driver operation.

2. The apparatus of claim 1, the environment configuration
and control module to store information for the execution
environment, the information comprising one or more of
register information, memory information, and privilege
information, and the configuring comprising transferring the
information from the kernel space to the user process of the
user space for execution of the device driver operation.

3. The apparatus of claim 1, the device driver redirection
module to generate an operation to call a kernel control opera-
tion with a process identification (ID) of the user process and
aredirected operation address for the device driver operation
and change one or more of the instructions in the kernel space
to initiate the operation.

4. The apparatus of claim 3, comprising:

a kernel space control module for execution on the proces-
sor component including the kernel control operation to
receive a call message from the operation with the pro-
cess ID and the redirected operation address; and

the user space control module to execute the device driver
operation in the user space based on the process 1D and
the redirected operation address received from the ker-
nel control operation.

5. The apparatus of claim 1, comprising:

a kernel space control module including a kernel control
operation to determine when the device driver operation
is in an atomic context, and execute the device driver
operation in the kernel space.

6. The apparatus of claim 1, the interrupt handler module to
receive a second interrupt when another of the one of the one
or more instructions copied to the user process requires han-
dling in the kernel space.

7. The apparatus of claim 6, the interrupt handler module to
determine when a kernel operation or device driver operation
is called by the device driver operation based on the second
interrupt, and send a call message to call the kernel operation
or the device driver operation from the kernel space based on
the determination.

8. The apparatus of claim 6, the interrupt handler module to
determine the device driver operation requires access to ker-
nel memory based on the second interrupt, send an address to
access the kernel memory from the kernel space, and receive
contents of the kernel memory.

US 9,384,015 B2

25

9. The apparatus of claim 1, the interrupt handler module to
determine the instruction is a privileged instruction requiring
execution in the kernel space based on the interrupt, and send
a message to the kernel space control module to execute the
privileged instruction in the kernel space.

10. An article comprising a non-transitory computer-read-
able storage medium comprising instructions that when
executed enable a computing device to:

configure an execution environment in a user space for

device driver operations to perform debugging and test-
ing;

redirect a device driver operation for execution in the

execution environment in the user space including copy-
ing instructions in one or more binary files for the device
driver operation intended for operation in the kernel
space to a user process in the user space;

determine whether an instruction of the one or more

instructions copied to the user process requires handling
an interrupt handler;

in response to determining the instruction requires han-

dling by an interrupt handler, assign an interrupt to the
instruction to create an exception;

execute the device driver operation in the execution envi-

ronment in the user space; and

receive the interrupt for the instruction;

execute the instruction in the kernel space; and

revert back to the user space to execute remaining instruc-

tions of the one or more instruction of the device driver
operation.
11. The non-transitory computer-readable storage medium
of claim 10, comprising instructions that when executed
enable the computing device to:
store information for the execution environment, the infor-
mation comprising one or more of register information,
memory information, and privilege information; and

transfer the information from the kernel space to the user
process of the user space for execution of the redirected
device driver operation.

12. The non-transitory computer-readable storage medium
of claim 10, comprising instructions that when executed
enable the computing device to:

generate an operation to call akernel control operation with

a process identification (ID) of the user process and a
redirected operation address for the device driver opera-
tion; and

change one or more of the instructions in the kernel space

to initiate the operation.
13. The non-transitory computer-readable storage medium
of claim 12, comprising instructions that when executed
enable the computing device to:
receive a call message from the operation with the process
ID and the operation address; and

execute the device driver operation in the user space based
on the process 1D and the redirected operation address
received from the kernel control operation.

14. The non-transitory computer-readable storage medium
of claim 10, comprising instructions that when executed
enable the computing device to:

determine when the device driver operation is in an atomic

context; and

execute the device driver operation in the kernel space.

15. The non-transitory computer-readable storage medium
of claim 10, comprising instructions that when executed
enable the computing device to receive a second interrupt
when another one of the instructions requires handling in the
kernel space.

10

20

25

30

35

40

45

50

55

60

65

26

16. The non-transitory computer-readable storage medium
of claim 15, comprising instructions that when executed
enable the computing device to:

determine when a kernel operation or device driver opera-

tion is called by the device driver operation based on the
second interrupt; and

send a call message to call the kernel operation or the

device driver operation from the kernel space based on
the determination.
17. The non-transitory computer-readable storage medium
of claim 15, comprising instructions that when executed
enable the computing device to:
determine the device driver operation requires access to
kernel memory based on the second interrupt; and

send an address to access the kernel memory from the
kernel space and to receive contents of the kernel
memory.

18. The non-transitory computer-readable storage medium
of claim 10, comprising instructions that when executed
enable the computing device to:

determine the instruction is a privileged instruction requir-

ing execution in the kernel space based on the interrupt;
and

send a message to cause the privileged instruction to

execute in the kernel space.

19. A computer-implemented method, comprising:

configuring an execution environment in a user space for

device driver operations to perform debugging and test-
ing;

redirecting a device driver operation for execution in the

execution environment in the user space including copy-
ing instructions in one or more binary files for the device
driver operation from the kernel space to a user process
in the user space;

determining whether an instruction of the one or more

instructions copied to the user process requires handling
an interrupt handler;

in response to determining the instruction requires han-

dling by an interrupt handler, assigning an interrupt to
the instruction to create an exception;

executing the device driver operation in the execution envi-

ronment in the user space;

receiving the interrupt for the instruction;

executing the instruction in the kernel space; and

reverting back to the user space to execute remaining

instructions of the one or more instruction of the device
driver operation.

20. The computer-implemented method of claim 19, the
configuring comprising:

storing information for the execution environment, the

information comprising one or more of register infor-
mation, memory information, and privilege informa-
tion; and

transferring the information from the kernel space to the

user process of the user space for execution of the device
driver operation.

21. The computer-implemented method of 19, comprising:

generating an operation to call a kernel control operation

with a process identification (ID) of the user process and
a redirected operation address for the device driver
operation; and

changing one or more of the instructions in the kernel space

to initiate the operation to call the kernel control opera-
tion.

22. The computer-implemented method of claim 21, com-
prising:

US 9,384,015 B2

27

receiving a call message from the operation with the pro-
cess ID and the redirected operation address; and
executing the device driver operation in the user space
based on the process ID and the redirected operation
address received from the kernel control operation.
23. The computer-implemented method of claim 19, com-
prising:
determining when the device driver operation is in an
atomic context; and
executing the device driver operation in the kernel space.
24. The computer-implemented method of claim 19, com-
prising:
receiving a second interrupt when another one of the
instructions requires handling in the kernel space.
25. The computer-implemented method of claim 19, com-
prising:
determining when a kernel operation or the device driver
operation based on the second interrupt; and
sending a call message to call the kernel operation or the
device driver operation from the kernel space based on
the determination.

#* #* #* #* #*

10

15

20

28

